

SQY12-04 双路高精度智能测速仪 用户使用手册

Ver.070922

上海擎科仪表电子有限公司

地址: 上海市耀华路 579 弄 43 号 501 室

电话: 021-58740062, 58456241

http://www.yuking.com

邮编: 200126 传真: 021-68705442

咨询电话: 13601688857

E-mail:yuking@yuking.com

SQY12-04 双路高精度智能测速仪用户使用手册

一、概述

SQY12-04 双路高精度智能测速仪,接受两路来自旋转体的传感信号,运算并显示各自的转速及其间的转速差、转速比的双通道数字式转速表。对各个通道的输入信号,可以用独立的系数进行修正,任意的设定为 0.0001 ~ 99999.9 倍,因此,根据所测对象与用途不同而异,除转速外,还可变换为任意的物理量。例如:可以测量传送线的速度比、速度差,以及钢板、造纸、铝板等压制压延工程中的压下率(延伸率)、拉张率、滑动率等生产线上的参数测量。另外,每个通道内设置了独立的上、下限比较继电器输出,和两路模拟信号 1~5V 输出,可对旋转体进行监视与控制。根据用途与使用环境的不同,本公司有各种转速传感器与 SQY12-04 转速表配套使用,构成最佳的测量、控制系统。

二、特点

- 能运算显示两个旋转体的速度
- 使用系数修正功能,可变换成与转速成比例的任意物理量。
- 内置 3 段比较值可变,逻辑可组合的继电器输出功能 (附加功能 SQY12-04-120)
- 双通道运算功能,可显示转速差、转速比、压下率、滑动率、变化率
- 宽量程,从低速到高速 (输入频率: $0.005 \text{ Hz} \sim 20 \text{ kHz}$)
- RS-232C 通讯
- 两路模拟信号 1~5V (附加功能 SQY12-04-105)
- 安装方便,尺寸按DIN 规格(160×80)
- 采用 128×64LCM 显示器:显示测量值和转速差、转速比

三、规格概要

配套传感器:本公司配套的传感器有:磁电式传感器、光电式传感器和旋转编码器等

输入阻抗: 5 kΩ 以上 (在 20kHz 时)

输入通道数:双通道

输入放大形式: AC/DC (切换式)

测量方式: 定脉冲运算方式或定时运算方式

转速直读运算功能: 系数设定范围: 0.0001 ~ 99999.9

双通道运算功能: 速差 < B - A > 、速比 < (B / A) x 100 > 、变化率 < (B - A / A) x 100 >

显示器: 128×64LCM 显示器

显示范围: 0 ~ ±999999 (0.00 ~ 9999.99%)

信号输入: 输入阻抗: $5 k\Omega$ 以上

AC(交流)放大器

信号波形:正弦波或矩形波

信号电压量程: 正弦波 0.2 ~ +15 V、矩形波 0.6 ~ 40 Vp-p

信号频率量程: $1 \, \mathrm{Hz} \sim 20 \, \mathrm{kHz}$

DC (直流) 放大器

信号波形: 脉宽 10 µs 以上的矩形波

信号电压量程: Hi 电平 +4 \sim 30 V、Lo 电平 -1 \sim +1 V

信号频率量程: $0.005 \, \text{Hz} \sim 20 \, \text{kHz}$

比较器功能 (附加功能)

设定段数: 3段

量程: 0 ∼ ±999999

输出项目: on/off 输出方式: 逻辑组合

输出形式:继电器触点(DC 30 V、0.1 A)

模拟信号输出(附加功能)

变换方式: 12 bit D/A 方式

电压量程: 1 ~ 5 V / F.S (F.S 为满量程,可任意设定)

RS-232 通讯

波特率: 115200 bps

可以进行参数设定;

也可以与专门的测量软件配套进行连续的动态记录和分析(附加功能)

传感器用电源

DC 12 V ± 1 V (最大 100 mA) A 和 B 通道的总和

电源

AC 220 V 50 Hz 20 VA

使用温度范围 0 ~ 40℃

使用湿度范围-10 ~ 55℃

湿度范围最大95% (但不能结露)

外形尺寸 160 (W) × 80 (H) × 130 (D) mm

重量约 1.5 kg

四、后面板接线端子说明

接线端子图:

1	2	3	4	5	6	7	8	9	10	11	12	
	VOut2+	VOut1+	常开	Ј3	常闭	常开	Ј2	常闭	常开	Ј1	常闭	
	模拟量输出			继电器3		继电器 2		继电器1				
SQY12-04 双路智能测速仪 出厂序号:												
	RS	S232 通讯		馈电		交流信号输入		直流信号输入		220V, AC		
-15V	Com	Rxd	Txd	OV	12V	SA1	SA2	SD1	SD2	N	L	
13	14	15	16	17	18	19	20	21	22	23	24	

L、N: 接入供电电源(交流 220V, 50Hz)

交流信号输入: SA1、0V 和 SA2、0V 磁电类传感器输入

直流信号输入: SD1、0V 和 SD2、0V NPN 型集电极开路输出类传感器输入

馈电 12V、0V: 给 NPN 型集电极开路输出类传感器提供 12V 直流电源

RS232 通讯: 通过通讯接口,通过计算机对参数进行设定

模拟量输出 Vout1+、Com 和 Vout2+、Com: 两路测量结果分别对应的线性电压输出(附加功能)

继电器: 三路继电器输出,分别有常开、常闭端和公共端 J (附加功能)

五、参数设定

采用双通道测速仪设置软件,对双通道智能测速仪的参数进行设定。 主要设定内容见下图,及后续详细介绍。

図 双通道测速仪 - 上海擎科(え表		_			
串口设置————	基本参数 ———		1			
端口号 COMI V	本机地址	1	修改参数 读取参数			
波特率 115200 ▼	采样时间	10 ms				
数据位 8 ▼	小数点显示位置	6	○ 直流信号			
停止位 2 🔻	无信号超时时间	5000 ms	○ 交流信号			
	└───── ┌当量系数 ────		」 			
校验位 None ▼	通道A系数	0	● Hz ● B-A			
打开串口	通道B系数	0	C kHz C A/B			
	_模拟量输出 —— 通道A零位	0	报警设置 ————————————————————————————————————			
			继电器1 0 - 0			
Kingyu®	通道A线性值	0	功能 0 (0:A, 1:B, 2:A+B, 3:AB)			
1 any of the	通道A最大测量值	ĮU .	继电器20 -0			
	通道B零位	0	功能 1 (0:A, 1:B, 2:A+B, 3:AB)			
退出	通道B线性值	0	继电器30 — 0			
	通道B最大测量值	0	功能 2 (0:A, 1:B, 2:A+B, 3:AB)			

● 基本参数

本机地址:1(固定)

采样时间: 10~100000mS

小数点显示位:1~8

无信号超时时间: 10~10000mS

● 当量系数

通道 A 系数: 0。00001~99999 A=通道 A 显示物理量/被测通道频率 通道 B 系数: 0。00001~99999 B=通道 B 显示物理量/被测通道频率

● 显示单位

Hz, kHz, r/min 测频率时可以选择: Hz或 kHz, 测转速时可以选择: r/min

● 功能选择

B-A: 通道 B 与通道 A 之间的差速 A/B: 通道 A 与通道 B 之间的速比 1-A/B: 通道 B 与通道 A 之间的速差率

● 模拟量输出

零位:调整零位值,使测量值为零时,输出电压为 1.00V 线性值:调整线性值值,使测量值为最大测量值时,输出电压为 5.00V 最大测量值:输出 5.00V 对应最大测量值

● 报警设置

继电器 1:报警区间值在 0.000001~9999999 之间的任意段 组合功能值

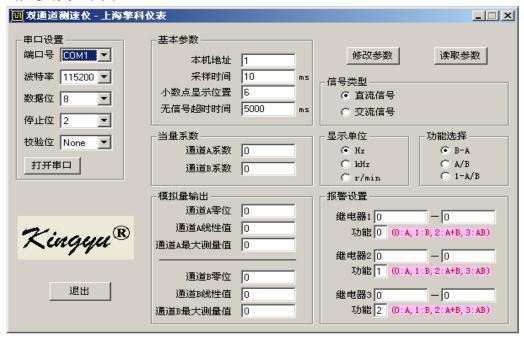
- 0: A 通道测量值在指定区间时,继电器 1 报警
- 1: B通道测量值在指定区间时,继电器1报警
- 2: A 通道测量值或 B 通道测量值在指定区间时,继电器 1 报警
- 3: A 通道测量值且 B 通道测量值在指定区间时,继电器 1 报警
- 继电器 2: 报警区间值在 0.000001~9999999 之间的任意段 组合功能值
 - 0: A 通道测量值在指定区间时,继电器 2 报警
 - 1: B 通道测量值在指定区间时,继电器 2 报警

- 2: A 通道测量值或 B 通道测量值在指定区间时,继电器 2 报警
- 3: A 通道测量值且 B 通道测量值在指定区间时,继电器 2 报警

继电器 3: 报警区间值在 0.000001~9999999 之间的任意段 组合功能值

- 0: A 通道测量值在指定区间时,继电器 3 报警
- 1: B通道测量值在指定区间时,继电器 3 报警
- 2: A 通道测量值或 B 通道测量值在指定区间时,继电器 3 报警
- 3: A 通道测量值且 B 通道测量值在指定区间时,继电器 3 报警

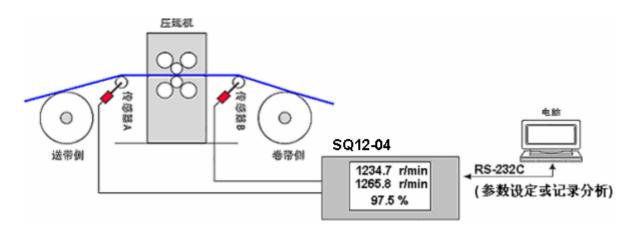
串口设置


端口号: 根据使用状况选择 COM1 ~ COM10

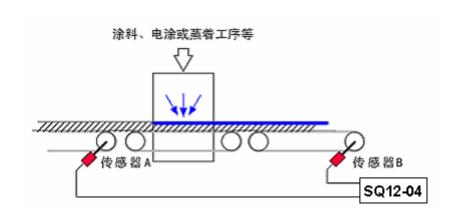
波特率: 115200 (固定)

数据位: 8 (固定) 停止位: 2 (固定)

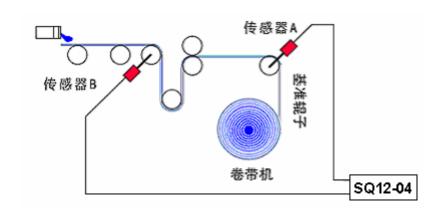
校验位: None (固定)


检验串口接线,点击"打开串口"应该显示红色"OK",点击"读取参数"应该显示出厂参数如下图:

六、用途举例


■ 测量钢板、纸张、铝板等压延工程中的压延率(伸张率)

通过装在卷带侧的转速传感器 B 与送带侧的转速传感器 A 之间的加速差,与 A 处的速度之比率,来测出卷带的压延率(伸张率)


■ 传送线速度变化率的测量

检测涂料、电涂或蒸着工序前后的传送带之速度,观察其间速度变化,判断工序的质量。

■ 造纸生产线,玻璃制造生产线上滑动率的测量

在生产线的旋转部位装上转速传感器,把信号输入给 SQY12-04,此时,SQY12-04 上显示出与基准辊子的速度变化率,所以,可按此调整各部分的速度,以得到稳定质量的产品。

上海擎科仪表电子有限公司